Spectral Data. ¹H NMR (CDCl₃): δ 2.92 (d, J = 10 Hz).¹² Uv-vis (CH₃NO₂): λ_{max} 372 nm (log ϵ 3.05). Ir (CHCl₃, NaCl cells): 2935 (m), 2850 (m), 2810 (w), 1485 (m), 1460 (m), 1305 (m), 1235 (w), 1194 (m), 1128 (s), 1070 (m), 1045 (m), 998 (vs), 970 (sh), 759 (m), 732 (m), 700 (w), 652 (vw) cm⁻¹. Ir (Nujol, polyethylene cells): 530 (m), 483 (s), 380 (sh), 365 (s), 340 (s), 300 (m), 225 (w) cm⁻¹. Raman: 1480 (w), 1445 (w), 1420 (w), 1310 (vw), 1155 (m), 1090 (vw), 1070 (vw), 990 (sh), 970 (vs), 760 (w), 653 (s), 520 (m), 480 (vw), 360 (m), 307 (s), 220 (w, sh) cm⁻¹. Mass spectrum, m/e(relative abundance, assignment): 33213 (4.0, TiCl₃·HMPA), 29713 (2.5, TiCl₂·HMPA), 188¹³ (22, TiCl₄), 179 (100, HMPA), 153¹³ (37, TiCl₃), 135 (95, O=P[N(CH₃)₂]₂), 92 (63, O=PN(CH₃)₂), 44 (61, $N(CH_3)_2).$

Acknowledgment. We are grateful to PHS-NIH for generous financial support of this work (Grant 5-RO1-AI-11690-02 MCHB). We appreciate discussions with Professor E. A. Deutsch and R. C. Elder and the technical assistance of Mr. Rodney Erkes, all of this department.

Registry No. I, 59219-54-4.

References and Notes

- J. E. Mc Murry and M. P. Fleming, J. Am. Chem. Soc., 96, 4708 (1974), and other papers in the series.
- (a) R. J. H. Clark, J. Lewis, D. J. Machin, and R. S. Nyholm, J. Chem. (2)Soc., 379 (1963); (b) G. W. A. Fowles, R. A. Hoodless, and R. A. Walton, ibid., 5873 (1963).
- Chem. Abstr., 71, 39789, 49231 (1969). It is likely that, in THF, the (3)sixth coordination site in TiCl₃·2HMPA is occupied by a solvent molecule, which is readily displaced by oxygen.
- (4) Similar behavior was observed in toluene, the solvent previously used to prepare TiCl₃·2HMPA.
- (5) The uptake rate was initially rapid, with approximately half of the
- The optice fact was initially rapid, with approximately here of the theoretical amount absorbed after 1.5 h. T. P. Freedman, C. M. Yoshida, and T. M. Leohr, J. Chem. Soc., Chem. Commun., 1016 (1974); A. J. Meleuger, L. R. Anderson, and C. T. (6) Ratcliffe, Appl. Spectrosc., 26, 381 (1972).
- (a) R. S. P. Coutts, P. C. Wailes, and R. L. Martin, J. Organomet. Chem., 50, 145 (1973); (b) J. T. Donoghue and R. S. Drago, Inorg. Chem., (7), 572 (1963).
- (8) H. Schafer, F. Wartenpfuhl, and W. Weise, Z. Anorg. Allg. Chem., 295, 268 (1958); N. V. Ageer, Chem. Abstr., 79, 147 791 (1973).
- (a) B. N. Chakravarte, Naturwissenschaften, 45, 286 (1958). (b) M. Cox, J. Lewis, and R. S. Nyholm, J. Chem. Soc., 2840 (1965). (c) B. R. McGarvey and E. L. Tepper, Inorg. Chem., 8, 498 (1969). Cryoscopic molecular weights were somewhat ambiguous. Structure assignment was based on the absence of Ti=O stretch and mass spectral data.
- (10) W. P. Griffith, Coord. Chem. Rev., 5, 459 (1970). J. J. Salzman, Helv. Chim. Acta, 51, 903 (1968).
- (12) The methyl doublet of HMPA occurs at δ 2.66; that of TlCl₃·2HMPA,
- at δ 2.83. (13) Lowest m/e peak of chlorine isotope cluster.
- (14) W. J. Geary, Coord. Chem. Rev., 7, 81 (1971).

Contribution from the Research School of Chemistry, The Australian National University, Canberra, A.C.T. 2600, Australia

Stereochemistry of Chlorine Oxidation of Some Dimethyl Sulfoxide-Cobalt(III) Complexes

W. G. Jackson and A. M. Sargeson*

Received November 18, 1975

AIC50838P

The evidence for intermediates of reduced coordination numbers arising from rapid induced aquation of coordinated ligands in cobalt(III) amine complexes comes from two sources. First, the competition ratios for nucleophiles relative to water (both anions and neutral nucleophiles) were essentially independent of the leaving group.¹ Second, the stereochemistry of the reaction products was also independent of the leaving group.1

The induced aquation reactions suitable for yielding the second set of data were limited: namely, the nitrosation of coordinated azide ion,² e.g.

$$(en)_2 \text{CoClN}_3^* + \text{NO}^+ \rightarrow (en)_2 \text{CoCl(NNNNO)}^{2+}$$

$$\rightarrow (en)_2 \text{CoCl}^{2+} + \text{N}_2 + \text{N}_2 \text{O}$$

$$\downarrow \text{H}_2 \text{O}$$

$$(en)_2 \text{CoClOH}_2^{2+}$$

and the Hg²⁺-catalyzed aquation of halide ion,² e.g.

$$(en)_{2}CoCl_{2}^{+} + Hg^{2+} \rightarrow (en)_{2}CoCl^{2+} + HgCl^{+} \xrightarrow{H_{2}O} (en)_{2}CoClOH_{2}^{-2+}$$

A portion of the data suffers from the problem that two such examples could coincidentally agree and there is an obvious need to generate the intermediate by some other route. This aspect of substitution chemistry is complementary of course to a need for finding more methods of accelerating what are usually relatively slow reactions and to putting the intermediates to use for synthetic purposes.¹

We report here additional evidence for the five-coordinate $[Co(en)_2 X]^{2+}$ intermediates generated by Cl₂ oxidation of dimethyl sulfoxide (DMSO) in cis-[Co(en)₂(DMSO)X]ⁿ⁺ ions $(X = Cl, OH_2, DMSO).$

Results and Discussion

Only one isomer of $Co(en)_2(DMSO)Cl^{2+}$ is known³ and this has been assigned as the cis configuration with DMSO oxygen bonded^{3,4} from the amine proton signal pattern in the ¹H NMR and from the similarity of its visible spectrum to that of cis-Co(en)₂(OH₂)Cl²⁺. This cis configuration is now confirmed, both by the observation of the small (~ 1 Hz at 100 MHz) diastereotopic splitting in the DMSO methyl resonances in the ¹H NMR (10⁻³ M DCl) and by its resolution into catoptric forms (vide infra). The cis assignment for the other DMSO (and TMSO)⁵ complexes reported herein follows similarly.

cis-[Co(en)₂(DMSO)Cl](ClO₄)₂ or [Co(en)₂(DMSO)-Cl]NO₃ClO₄ (ϵ_{519} 96.8, H₂O; ϵ_{521} 112.0, DMSO) reacts rapidly (seconds, 20 °C) with excess Cl₂ (0.02-0.08 M) in dilute solution (3 \times 10⁻⁴ to 10⁻² M) in aqueous HClO₄ (0.01–0.1 M). The visible spectrum after 5 min (ϵ_{510} 70.5 ± $(0.8 (5))^6$ corresponds to 74 ± 1% cis- and 26 ± 1% trans- $Co(en)_2(OH_2)Cl^{2+}$. Similar experiments in which excess (200-fold) NaHCO₃ was added following oxidation showed ϵ_{510} 107 ± 2 (3) after 5-10 min. Analysis in terms of Co- $(en)_2CO_3^+$ (ϵ_{510} 133.8) and *trans*-Co(en)_2ClOCO_2(H)ⁿ⁺ (ϵ_{510} $(21.2)^7$ revealed an identical isomer composition, $76 \pm 2\%$ cis. (-)-cis-[Co(en)₂(DMSO)Cl](ClO₄)₂ ($[\alpha]_{589}$ -247°, $[\alpha]_{578}$ $-308^{\circ}, [\alpha]_{560} - 324^{\circ}, [\alpha]_{480} + 439^{\circ}, [\alpha]_{350} + 782^{\circ}, 20 \text{ °C}, 0.01$ M HClO₄, $c 1.69 \times 10^{-3} \text{ g/ml}$; $[\alpha]_{589} - 197^{\circ}$, $[\alpha]_{578} - 191^{\circ}$, $[\alpha]_{510} + 384^{\circ}$, $[\alpha]_{350} + 745^{\circ}$, 20 °C, DMSO, $c 1.75 \times 10^{-3}$ g/ml) and (-)-[Co(en)₂(DMSO)Cl]NO₃ClO₄ were prepared by allowing (-)-cis-[Co(en)₂Cl₂]ClO₄ ($[\alpha]_{589}$ -575°)⁸ to react with AgClO₄ (1.05 equiv) in DMSO (1 h, 20 °C). Work-up by the usual procedure³ yielded crystals of the diperchlorate which were recrystallized from water to constant rotation. After reaction with Cl_2 in HClO₄ (0.01 M) as above the visible and rotary dispersion spectra were recorded (ϵ_{510} 70.5 ± 0.5 (2), $[M]^{20}_{589} -715 \pm 20$ (2)° $M^{-1} m^{-1}$, $[M]^{20}_{578} -935 \pm 20$ (2)° $M^{-1} m^{-1}$).⁹ The properties recorded⁸ for (-)-*cis*-[Co- $(en)_2(OH_2)Cl]Br_2 H_2O$ (ϵ_{510} 91.2, $[M]^{20}_{589}$ -903°, $[M]^{20}_{578}$ -1272°) and trans-[Co(en)₂(OH₂)Cl]SO₄ (ϵ_{510} 11.0) show that the spectrophotometric data correspond to $74 \pm 1\%$ cis, and the polarimetric data, to $76 \pm 3\%$ (-)-cis product. The fraction of optically pure cis product was fixed more precisely by quenching with HCO₃⁻, as earlier (ϵ_{510} 106.5 ± 1.0 (2), $[M]^{20}_{589} - 3480 \pm 20^{\circ}, [M]^{20}_{578} - 4100 \pm 20^{\circ}, [M]^{20}_{490} + 6550 \pm 20^{\circ}).$ Optically pure (-)-[Co(en)₂CO₃]ClO₄·0.5H₂O in this medium shows [M]²⁰589 -4590°, [M]²⁰578 -5430°, $[M]^{20}_{490}$ +8540°, and ϵ_{510} 134.2. These numbers correspond to 75.5 ± 1.5% cis and 76 ± 1% (-)-cis, indicating full activity in the cis product.

cis-[Co(en)₂(TMSO)Cl](ClO₄)₂ and [Co(en)₂(TMSO)-Cl]NO₃ClO₄ (ϵ_{519} 109.2, H₂O) were prepared in a manner similar to the preparation of DMSO analogues. Chlorine oxidation (0.08 M, in 0.1 M HClO₄), complete inside 3 min at 20 °C, yielded ϵ_{510} 71.0 ± 0.3 (2), and again this corresponds to 75 ± 0.5% cis-Co(en)₂(OH₂)Cl²⁺.

The common stereochemical result $(76 \pm 1\% (-)$ -cis, $24 \pm 1\%$ trans) for Cl₂ oxidation of *cis*-Co(en)₂(R₂SO)Cl²⁺ agrees closely with the results of studies on (-)-*cis*-Co(en)₂Cl₂⁺ + Hg²⁺ (77 ± 2% (-)-cis) and (-)-*cis*-Co(en)₂ClN₃⁺ + NO⁺ (79 ± 2% (-)-cis).² The same result in four cases, where the variation in the leaving group now surely provides sufficient opportunity for differing product distributions, seems clear-cut evidence for the common dissymmetric five-coordinate species proposed previously.²

Recently the induced aquations cis-Co(en)₂(OH₂)N₃²⁺ + NO⁺ and cis-Co(en)₂(OH₂)X²⁺ (X = Cl, Br) + Hg²⁺ were shown to give 95.0 ± 0.5% cis product.¹⁰ Although the product ratio is less well defined here, we examined the Cl₂ oxidation of cis-Co(en)₂(OH₂)(DMSO)³⁺ to see if this also fitted the pattern. cis-[Co(en)₂(OH₂)(DMSO)](NO₃)₂ClO₄ (ϵ_{500} 92.9, 0.01 M HClO₄), from cis-[Co(en)₂(DMSO)](NO₃)₂ClO₄ (ϵ_{500} 92.9, 0.01 M HClO₄), from cis-[Co(en)₂(DMSO)Br](ClO₄)₂ and excess AgClO₄ in 0.01 M HClO₄, was crystallized from water by the addition of LiNO₃, LiClO₄, and ethanol. Chlorination through to the diaquo species gave ϵ_{492} 78.0 ± 0.5 (2) which indeed corresponds to 95.5 ± 0.5% cis product (Co(en)₂-(OH₂)₂³⁺: ϵ_{492} (cis) 80.9, ϵ_{492} (trans) 17.6).¹⁰ The four common results now strengthen the case for a Co(en)₂(OH₂)³⁺ pentacoordinate intermediate, although the cis:trans ratio here is less accurate than that arising from [Co(en)₂Cl]⁺.

cis-[Co(en)₂(DMSO)₂](ClO₄)₃⁴ or [Co(en)₂(DMSO)₂]- $(ClO_4)_2NO_3$ (ϵ_{510} 112.0, H₂O) was also oxidized rapidly by Cl₂ in HClO₄ in two steps through to Co(en)₂(OH₂)₂³⁺ (ϵ_{492} 74.8 \pm 0.8 (2)). If it is assumed that *trans*-Co(en)₂(OH₂)-(DMSO)³⁺ gives the established¹⁰ stereochemistry for induced aquation ($62 \pm 0.5\%$ trans), as the cis isomer does (vide supra), then the steric course for the first step is calculated as 92 \pm 1.5% cis-Co(en)₂(OH₂)(DMSO)³⁺. cis-Co(en)₂(DMSO)Cl²⁺ + Hg²⁺ (0.5 M in 0.5 M HClO₄) (ϵ_{500} 87.5 ± 0.8 (2)) and *cis*-Co(en)₂(DMSO)Br²⁺ + Hg²⁺ (0.2–1.0 M in 0.2–1.0 M HClO₄) (ϵ_{500} 88.6 ± 0.5 (2)) clearly indicate a common product and the formation of $Co(en)_2(DMSO)^{3+}$ which captures water with predominant but not complete retention (ϵ_{500} 92.9 for pure *cis*-Co(en)₂(OH₂)(DMSO)³⁺). Treatment of the $Co(en)_2(OH_2)(DMSO)^{3+}$ products in each case with Cl_2 caused the slow formation of $Co(en)_2(OH_2)_2^{3+}$. Hg^{2+} in excess shifts the very rapid $Cl_2 + H_2O \rightleftharpoons HOCl + H^+ + Cl^$ equilibrium to the right through Cl⁻ complexation, and our observations confirm that HOCl oxidation of coordinated DMSO is at least 2 orders of magnitude slower than that of Cl₂.¹¹ Readjusting the stoichiometry (0.02 M Hg²⁺, 10 min, followed by 0.08 M Cl₂, 3 min) enabled the rapid stepwise generation of $Co(en)_2(OH_2)_2^{3+}$ from *cis*-Co(en)_2(DMSO)X²+ $(X = Cl, \epsilon_{492} 75.5 \pm 0.5 (2); X = Br, \epsilon_{492} 75.7 \pm 0.5 (2))$ and the final extinction coefficients matched that observed for cis-Co(en)₂(DMSO)₂³⁺ + Cl₂ (ϵ_{492} 74.8 ± 0.8). cis-[Co- $(en)_2(DMSO)N_3]NO_3ClO_4$ (ϵ_{505} 326, H₂O), prepared from cis-[Co(en)₂(DMSO)₂](ClO₄)₃ + NaN₃ (1.0 equiv) in DMSO (1.5 h, 20 °C), reacted rapidly with excess NO⁺ to yield ϵ_{500} 88.0 ± 0.5 (2), providing a fourth example of these common product distribution reactions; subsequent treatment of the $Co(en)_2(OH_2)(DMSO)^{3+}$ products with Cl_2 yielded ϵ_{492} 76.0 \pm 0.8 (2), as confirmation. Since all of these reactions are largely although not wholly retentive and $\epsilon(cis) \gg \epsilon(trans)$ at these wavelengths,¹² the calculated steric course for the

directly observed first step is not especially sensitive to ϵ (trans), and the result (93 ± 1% cis) is in close accord with that determined above (92 ± 1.5% cis), indicating that the OH₂ group (95.0 ± 0.5% cis) has a directing capacity similar to that of DMSO for water entry into the Co(en)₂X³⁺ intermediate.

Cl₂ (0.08 M) oxidation of *cis*-[Co(en)₂(DMSO)Br](ClO₄)₂ or *cis*-[Co(en)₂(DMSO)Br]NO₃ClO₄ (ϵ_{529} 102.8, H₂O) in 0.1 M HClO₄ yielded largely *cis*- and *trans*-Co(en)₂(OH)Cl²⁺ (ϵ_{510} 64.3 ± 0.5 (3), 66% cis). The HCO₃⁻ quenched product mixture had ϵ_{510} 103.1 ± 0.5 (2) which corresponds to the different composition, 73 ± 0.5% cis. Appreciable amounts of HOCl (~15%) exist in 0.1 M HClO₄,^{11,13} and since HOCl oxidation of coordinated bromide leads to aquo product and Cl₂ and HOCl oxidation rates are similar,¹³ formation of some Co(en)₂(OH₂)₂)³⁺ renders spectrophotometric analysis in terms of Co(en)₂(OH₂)₂Cl²⁺ inaccurate (66% cis). Both *cis*-Co-(en)₂(OH₂)Cl²⁺ and *cis*-Co(en)₂(OH₂)₂)³⁺ give the common product Co(en)₂CO₃⁺,⁸ and hence the HCO₃⁻ result is probably more accurate (73% cis).

cis-Co(en)₂(DMSO)Br²⁺ can react by first oxidation of DMSO to give cis- and trans-Co(en)₂(OH₂)Br²⁺ followed by Cl₂ oxidation with retention^{13,14} to give cis- and trans-Co-(en)₂(OH₂)Cl²⁺. Alternatively, bromide oxidation may occur first or competitively. The first possibility is expected to give 73% cis,¹⁰ and the second, up to 76% cis² product. Clearly the observed result cannot distinguish the alternatives and provides no definitive information about the existence of either Co(en)₂Cl²⁺ or Co(en)₂Br²⁺. Evidence for Co(en)₂Br²⁺ rests with results for the spontaneous aquation of (-)-cis-Co-(en)₂Br₂^{+ 4} and the reactions (-)-cis-Co(en)₂Br₂^{+ +} Hg²⁺, (-)-cis-Co(en)₂BrN₃^{+ +} NO⁺, and (-)-cis-Co(en)₂-(DMSO)Br²⁺ + Cl₂-0.1 M HCl (to suppress HOCl formation) all of which will be considered in detail elsewhere.

Chlorine oxidation of cis-[Co(en)₂(DMSO)N₃]NO₃ClO₄ also entails a double oxidation removing both DMSO and N₃⁻ and we cannot as yet confirm the existence of Co(en)₂N₃²⁺ (84 ± 2% (-)-cis-, 26 ± 2% *trans*-Co(en)₂(OH₂)N₃²⁺)² by this route. A following paper considers the prospects of steric change and anion competition in Cl₂ (and HOCl) oxidation of several azidoaminecobalt(III) complexes.

A recent note described the synthesis of the labile Co-(NH₃)₅OClO₃⁺ species, prepared in strong ClO₄⁻ media by capture of $Co(NH_3)_5^{3+}$ generated by usual routes.¹¹ This complex was first observed in the reaction of Co(NH₃)₅- $(DMSO)^{3+}$ with Cl₂ in HClO₄. Anion competition (Y⁻), especially high in this system, is believed to proceed by two routes, one via Co(NH₃)₅³⁺ and the other via Co- $(NH_3)_5OS(Cl)(CH_3)_2^{4+}, Y^-$ which because of increased ion association leads to enhanced anion entry. However, the prospect of significant amounts of six-coordinate perchlorato intermediates in the present study can be eliminated. Substantial incorporation of ClO₄⁻ into this type of complex by the induced aquation reactions requires a high concentration of ClO_4^- ion (≥ 1 M).¹¹ This condition is not met under the present circumstances where $[ClO_4^-] \le 0.1$ M and, moreover, the results were constant in the $[ClO_4^-]$ range 0.01–0.1 M.

The nature of the leaving group in these reactions is not yet established, but whether it be $SO(Cl)(CH_3)_2^+$, or $O_2S(CH_3)_2$ which is the ultimate product, its loss is exceedingly rapid and conducive to pentacoordinate intermediate formation. The present work supplies additional evidence for the existence of such intermediates arising from the redox reaction at the coordinated ligand.

Registry No. cis-[Co(en)₂(DMSO)Cl](ClO₄)₂, 15618-10-7; cis-[Co(en)₂(DMSO)Cl]NO₃ClO₄, 59301-94-9; (-)-cis-[Co(en)₂-(DMSO)Cl](ClO₄)₂, 59366-39-1; (-)-cis-[Co(en)₂(DMSO)Cl]-NO₃ClO₄, 59366-40-4; (-)-cis-[Co(en)₂ClO₄, 23791-82-4; cis-[Co(en)₂(TMSO)Cl](ClO₄)₂, 59301-96-1; cis-[Co(en)₂-

(TMSO)Cl]NO₃ClO₄, 59301-97-2; cis-[Co(en)₂(OH₂)(DMSO)]-(NO₃)₂ClO₄, 59301-99-4; cis-[Co(en)₂(DMSO)₂](ClO₄)₃, 14781-36-3; cis-[Co(en)₂(DMSO)₂](ClO₄)₂NO₃, 59302-00-0; cis-[Co-(en)₂(DMSO)N₃]NO₃ClO₄, 59302-02-2; cis-[Co(en)₂(DMSO)-Br](ClO₄)₂, 15818-85-6; cis-[Co(en)₂(DMSO)Br]NO₃ClO₄, 59302-03-3; cis-Co(en)₂(OH₂)Cl²⁺, 15693-74-0; (-)-cis-[Co(en)₂-(OH₂)Cl]²⁺, 45837-48-7; trans-Co(en)₂(OH₂)Cl²⁺, 14403-92-0; (-)-cis-[Co(en)₂CO₃]ClO₄, 38673-77-7; cis-Co(en)₂(OH₂)(DMSO)³⁺, 59301-98-3.

References and Notes

- (1) A. M. Sargeson, Pure Appl. Chem., 33, 527 (1973).
- (2) D. A. Buckingham, I. I. Olsen, and A. M. Sargeson, Inorg. Chem., 6, 1807 (1967).
- M. L. Tobe and D. W. Watts, J. Chem. Soc., 2291 (1964)
- I. R. Lantzke and D. W. Watts, Aust. J. Chem., 20, 35 (1967). (4)
- (5) TMSO = tetramethylene sulfoxide, $(CH_2)_4SO$.
- The number of determinations is given in parentheses. trans-Co(en)₂(OH₂)Cl²⁺ reacts rapidly (seconds, 20 °C) with excess HCO_3^- to yield trans-Co(en)₂ClOCO₂(H)ⁿ⁺; the visible spectrum which is pH dependent does not change rapidly with time (W. \hat{G} . Jackson and A. M. Sargeson, unpublished data). cis-Co(en)₂(OH₂)Cl²⁺ with HCO₃ goes rapidly (minutes, 20 °C) through to the chelate Co(en)₂CO₃+ with complete retention of geometric and optical configuration.⁵
- (8) F. P. Dwyer, A. M. Sargeson, and I. K. Reid, J. Am. Chem. Soc., 85, 1215 (1963).
- (9) If the units deg M⁻¹ m⁻¹ (≡deg mol⁻¹ dm²) are used for molar rotation, the customary values from [M] = (mol wt)α/cd (where α is rotation) observed, c is concentration in % w/v, and d = is path length in dm) are retained.
- (10) W. G. Jackson, *Inorg. Chim. Acta*, 10, 51 (1974).
 (11) J. N. MacB. Harrowfield, A. M. Sargeson, B. Singh, and J. Sullivan, Inorg. Chem., 14, 2864 (1975).
- (12) DMSO is spectrochemically very similar to Cl⁻; $\epsilon_{500} \sim 15$ for trans- $Co(en)_2(OH_2)Cl^{2+}$ was used for the calculation.
- (13) J. F. Remar, D. E. Pennington, and A. Haim, Inorg. Chem., 4, 1832 (1965).
- (14) Cf. (-)-cis-Co(en)₂Br₂⁺ and (-)-cis-Co(en)₂(OH₂)Br²⁺ which are oxidized in \hat{Cl}_2 (0.08 M)-HCl (0.1 M) with $100 \pm 2\%$ retention of geometric and optical configuration (W. G. Jackson and A. M. Sargeson, unpublished data).

Contribution from the Department of Chemistry, University of Florida, Gainesville, Florida

Reaction of the Simmons-Smith Reagent with Trimethylamine-Borane

B. R. Gragg* and G. E. Ryschkewitsch

Received December 17, 1975

AIC50908S

In the course of seeking alternate syntheses for 1,1,3,3tetramethyl-1,3-diazonia-2,4-diboratocyclopentane¹ the reaction of the Simmons-Smith reagent with several boron compounds was investigated.

A methylene-transfer reaction to a boron-nitrogen bond of the four-membered ring system of dimeric $(CH_3)_2NBH_2$ using the Simmons-Smith reagent, an organometallic complex formed between Zn and CH_2I_2 known to be an active methylene-transfer agent to carbon-carbon double bonds,²⁻⁴ was attempted. The carbon atom of the active methylene in the Simmons-Smith reagent exhibits electrophilic character⁴ and could compete for the electrons shared between boron and nitrogen in forming the four-membered ring system of dimeric $(CH_3)_2NBH_2$. Although the desired reaction did not occur, it was found that the Simmons-Smith reagent will transfer a methylene group to a boron-hydrogen bond.

Discussion

The Simmons-Smith reagent reacts with (CH₃)₃N·BH₃ transferring methylene groups to B-H bonds to produce, as the simplest moiety, a B-CH₃ unit.

* To whom correspondence should be addressed at the Department of Chemistry, University of Kentucky, Lexington, Ky. 40506.

The production of ethane during aqueous hydrolysis of the nonvolatile portion of the reaction mixtures with 0.1 M HCl confirms the presence of C_2H_5 units in the reaction mixture. The isolation of what is thought to be a high molecular weight alkane or mixture of alkanes suggests the presence of alkyl species containing an unknown number of methylene groups.

If the methylene groups transfer nonselectively to a B-H or a B-CH₃ bond, then on a purely statistical basis the probability of obtaining three methylene transfers to a BH₃ unit before obtaining a methylene group transfer to a resulting B-CH₃ bond is 22.2%. The yield of $B(CH_3)_3$ obtained when the Simmons-Smith reagent was prepared in the presence of $(CH_3)_3$ N·BH₃ (3 mol:1 mol, respectively) is close to this value (25%). Large excesses of the Simmons-Smith reagent did not increase the yield of $B(CH_3)_3$. Thus, the transfer appears to be essentially nonselective in nature when the Simmons-Smith reagent is prepared in the presence of $(CH_3)_3N \cdot BH_3$.

In the reaction of the Simmons-Smith reagent with $(CH_3)_3$ N·BH₃ in a 1:1 ratio B(CH₃)₃ was not produced. Over 68% of the $(CH_3)_3N$ put into the system as $(CH_3)_3N \cdot BH_3$ was recovered as a ZnI_2 complex of $(CH_3)_3N$. Thus, the B-N bond is destroyed during the initial stages of the reaction of the Simmons-Smith reagent with $(CH_3)_3N \cdot BH_3$.

If the Simmons-Smith reagent was formed in the absence of $(CH_3)_3N \cdot BH_3$ and then reacted with $(CH_3)_3N \cdot BH_3$, the maximum yield of $B(CH_3)_3$ obtained was 6.9%.

This difference in yields of $B(CH_3)_3$ is thought to be due to a change in nature of the Simmons-Smith reagent with time. This possibility has been mentioned previously³ but was not seriously considered.

In order to obtain additional information about the reagent the present authors reacted the Simmons-Smith reagent with $(CH_3)_3N$ in hope of isolating an organometallic species. The product obtained was shown to be [(CH₃)₂NCH₂]Zn- $I_2[N(CH_3)_3]$ in 7.1% yield. A similar compound has been previously prepared by allowing a ZnCl₂ solution in diethyl ether, treated with diazomethane, to react with $(CH_3)_3N$. The product reported was [(CH₃)₃NCH₂ZnCH₂N(CH₃)₃]²⁺Cl^{-2.5}

The new compound prepared here demonstrates that only 7.1% of the active methylene present in the Simmons–Smith reagent after 4 h in refluxing diethyl ether is in a position such that a CH_2ZnI_2 moiety can be trapped by $(CH_3)_3N$.

In the reaction of $(CH_3)_3N$ ·BH₃ with the Simmons-Smith reagent, formed over a 4-h period, it is interesting to observe that the yield of $B(CH_3)_3$ is very close to the amount of Zn-CH₂ trapped by $(CH_3)_3N$ under similar conditions.

It appears that the Simmons-Smith reagent is a methylene-transfer reagent that has a high percentage of a reactive intermediate present upon initial formation that either decomposes or rearranges to a less reactive or more selective species with time. The present authors contend that this feature of the Simmons-Smith reagent should be reconsidered.

Experimental Section

Preparation of the Simmons-Smith Reagent. In a typical synthesis of the Simmons-Smith reagent a sample (3.85 g, 52.7 mmol) of Zn/Cu couple [commercially available from Ventron or prepared by reacting 40-mesh Zn in glacial acetic acid with copper acetate] and CH₂I₂ (13.61 g, 48.2 mmol) were added to a 250-ml one-necked flask, equipped for magnetic stirring and reflux, containing 100 ml of diethyl ether. The mixture was brought to gentle reflux under a nitrogen atmosphere and maintained at reflux for 4 h or until the ¹H NMR spectrum showed that all of the CH₂I₂ had been consumed.

Reaction of Trimethylamine-Borane with the Simmons-Smith Reagent-I. A sample of (CH₃)₃N·BH₃ (1.79 g, 24.5 mmol) was added to CH_2I_2 (19.92 g, 70.6 mmol) and the Zn/Cu couple (5.23 g, 71.6 mmol) in 100 ml of diethyl ether in a 250-ml one-necked flask equipped with a magnetic stirring bar.

This mixture was connected to a large cold finger filled with a dry ice-acetone mixture. The upper outlet was connected to a series of three liquid N2 traps on the vacuum line to trap any -78 °C non-